

Structural Design Calculations

Project Title: Protek 2000

Privacy Screen Post Design

Job No: PPS.01

Date: March 2024

Prepared By: Nick Kitchen BEng CEng MIStructE

Opus Engineering Consultants Ltd Field View Wrigwell Lane Ipplepen Devon, TQ12 5UB

Tel: 01803 813430 Mob: 07814794161

e: npk@opusengineeringltd.co.uk

Project:

Protek 2000 Privacy Screen Post Design Structural Calulations

Project No.	Design By	Date	Sheet No.	Rev	Rev Date
PPS.01	NPK	March 2024	01		

100x50x3 Post Checks

Section Modulus = 21.9 cm³, Allowable Stress = 275N/mm²

Stess =
$$\underline{M}$$
 So M = $\underline{21.9 \times 1000 \times 275}$ = 6.0 kNm
7

$$M = \frac{WL^2}{2}$$
, $H = 2.4m$, So $W = \frac{6 \times 2}{2.4^2} = 2.0 \text{ kN/m Run}$

Locate Posts at 2.5m Crs, Allowable pressure = 2/2.5 = 0.8kN/m²

Using Factor of Safety of 1.2 for wind allowable pressure = $0.8 / 1.2 = 0.67 \text{ kN/m}^2$

So : A solid Pretek Screen with 100x50x3 Posts at 2.5m crs is suitable to support wind pressures of up to $0.67kN/m^2$

In accordance with Kroftman Table, this equates to approximatley 70mph Winds.

Each site is to be checked by the project engineer to ensure compliance of this allowable pressure.

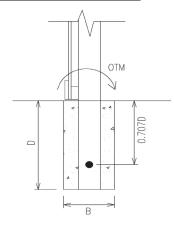
Check Posts for Pedstrian Load

Pedestrian Load = $0.74 \text{ kN/m Run} + 0.2 \text{ kN/m}^2$

$$M = \frac{2.4^2 \times 0.2 \times 1.2 \times 2.5}{2} + 0.74 \times 1.6 \times 2.5 \times 1.1 = 5.0 \text{ kNm}$$

Allowable for Post = 6.0 kNm > 5.0 kNm So O.K.

Use the same posts Size for 1.8m, 2.0m and 2.4m high hoardings


Project:

Protek 2000 Privacy Screen Post Design Structural Calulations

Project No.	Design By	Date	Sheet No.	Rev	Rev Date
PPS.01	NPK	March 2024	02		

Check Overall Stability

With Reference to TWF guide ground conditioans are:

- 1 Good Ground = 630kN/m²
- 2 Average Ground = 390kN/m²
- 3 Poor Ground = 230kN/m²

Check when H = 2.4m, B = 350mm

 $UDL = 0.8 \times 2.5 m = 2.0 kN/m run$

For Good Ground - D = 900mm, So Le = $2.4 + 0.9 \times 0.707 = 3.04$ m

OTM =
$$\frac{3.04^2 \times 2.0}{2}$$
 = 9.24 kNm, Stabalising = $\frac{630 \times 0.35 \times 0.9^3}{10 \times 1.5}$ = 10.7 kNm So O.K.

For Average Ground - D = 1100mm, So Le = $2.4 + 1.1 \times 0.707 = 3.18$ m

OTM =
$$3.18^2 \times 2.0$$
 = 10.1 kNm, Stabalising = $390 \times 0.35 \times 1.1^3$ = 12.1 kNm So O.K.

For Poor Ground - D = 1300mm, So Le = $2.4 + 1.3 \times 0.707 = 3.32m$

OTM =
$$3.32^2 \times 2.0 = 11.0 \text{ kNm}$$
, Stabalising = $230 \times 0.35 \times 1.3^3 = 11.8 \text{ kNm}$ So O.K.

All the above values utilise a factor of Safety of 1.5.

Project:

Protek 2000 Privacy Screen Post Design Structural Calulations

Project No.	Design By	Date	Sheet No.	Rev	Rev Date
PPS.01	NPK	March 2024	03		

Check Overall Stability for 2.0m High Screens

B = 350mm, $UDL = 0.8 \times 2.5$ m = 2.0kN/m run H = 2.0m.

For Good Ground - D = 800mm, So Le = $2.0 + 0.8 \times 0.707 = 2.57$ m

OTM = $2.57^2 \times 2.0 = 6.58 \text{ kNm}$, Stabalising = $630 \times 0.35 \times 0.8^3 = 7.53 \text{ kNm}$ So O.K.

For Average Ground - D = 950mm, So Le = $2.0 + 0.95 \times 0.707 = 2.67$ m

OTM = $2.67^2 \times 2.0 = 7.14 \text{ kNm}$, Stabalising = $390 \times 0.35 \times 0.95^3 = 8.65 \text{ kNm}$ So O.K.

For Poor Ground - D = 1150mm, So Le = $2.0 + 1.15 \times 0.707 = 2.81$ m

OTM = $2.81^2 \times 2.0 = 7.91 \text{ kNm}$, Stabalising = $230 \times 0.35 \times 1.15^3 = 8.16 \text{ kNm}$ So O.K.

Check Overall Stability for 1.8m High Screens

H = 1.8m, B = 350mm, $UDL = 0.8 \times 2.5$ m = 2.0kN/m run

For Goor Ground - D = 750mm, So Le = $1.8 + 0.75 \times 0.707 = 2.33$ m

Stabalising = $\underline{630 \times 0.35 \times 0.75^3}$ = 6.20 kNm | So O.K. OTM = $2.33^2 \times 2.0 = 5.43 \text{ kNm}$,

For Average Ground - D = 900mm, So Le = $1.8 + 0.90 \times 0.707 = 2.44$ m

OTM = $\underline{2.44^2 \times 2.0}$ = 5.94 kNm, Stabalising = $\underline{390 \times 0.35 \times 0.90^3}$ = 6.64 kNm So O.K.

For Poor Ground - D = 1100mm, So Le = $1.8 + 1.1 \times 0.707 = 2.58$ m

OTM = $2.58^2 \times 2.0 = 6.64 \text{ kNm}$, Stabalising = $230 \times 0.35 \times 1.10^3 = 7.14 \text{ kNm}$ So O.K.

All the above values utilise a factor of Safety of 1.5.

Project:

Protek 2000 Privacy Screen Post Design Structural Calulations

Project No.	Design By	Date	Sheet No.	Rev	Rev Date
PPS.01	NPK	March 2024	04		

TABLE SHOWING FOUNDATION DEPTHS

Ground conditions	Height of screen	Depth of foundation
Good Ground	2.4m	900mm
AverageGround	2.4m	1100mm
Poor Ground	2.4m	1300mm
Good Ground	2.0m	800mm
AverageGround	2.0m	950mm
Poor Ground	2.0m	1150mm
Good Ground	1.8m	750mm
AverageGround	1.8m	900mm
Poor Ground	1.8m	1100mm

ALL FOUNDATIONS TO BE 350mm DIA

EACH PROJECT ENGINEER TO CONFIRM STRATA ON SITE AND COMPLIANCE OF WIND LOAD

